skip to main content


Search for: All records

Creators/Authors contains: "Long, Timothy E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Bis‐carbonylimidazolide (BCI) functionalization enables an efficient synthetic strategy to generate high molecular weight segmented nonisocyanate polyurethanes (NIPUs). Melt phase polymerization of ED‐2003 Jeffamine,4,4′‐methylenebis(cyclohexylamine), and a BCI monomer that mimics a 1,4‐butanediol chain extender enables polyether NIPUs that contain varying concentrations of hard segments ranging from 40 to 80 wt. %. Dynamic mechanical analysis and differential scanning calorimetry reveal thermal transitions for soft, hard, and mixed phases. Hard segment incorporations between 40 and 60 wt. % display up to three distinct phases pertaining to the poly(ethylene glycol) (PEG) soft segmentTg, melting transition, and hard segmentTg, while higher hard segment concentrations prohibit soft segment crystallization, presumably due to restricted molecular mobility from the hard segment. Atomic force microscopy allows for visualization and size determination of nanophase‐separated regimes, revealing a nanoscale rod‐like assembly of HS. Small‐angle X‐ray scattering confirms nanophase separation within the NIPU, characterizing both nanoscale amorphous domains and varying degrees of crystallinity. These NIPUs, which are synthesized with BCI monomers, display expected phase separation that is comparable to isocyanate‐derived analogues. This work demonstrates nanophase separation in BCI‐derived NIPUs and the feasibility of this nonisocyanate synthetic pathway for the preparation of segmented PU copolymers.

     
    more » « less
  2. Chain-transfer ring-opening metathesis polymerization (CT-ROMP) previously provided a route to carboxytelechelic polyethylene (PE) of controlled molecular weight; however, the incorporation of oligomeric PE into segmented copolymers remains unexplored. Herein, CT-ROMP afforded carboxytelechelic polycyclooctene segments, and subsequent reduction generated well-defined carboxytelechelic PE with M n = 3900 g mol −1 . Solvent-free melt polycondensation of neopentyl glycol and adipic acid with varying wt% telechelic PE oligomers yielded mechanically durable segmented copolyesters. The thermal and thermomechanical properties of the segmented copolyesters correlated with PE segment content, and high PE content copolymers exhibited remarkably similar morphologies and thermomechanical performance to conventional HDPE. The segmented copolyesters displayed advantageous physical properties while introducing susceptibility to chemo- and bio-catalytic depolymerization through periodic ester linkages, thus providing valuable fundamental understanding of an alternative route to HDPE. 
    more » « less
  3. Abstract

    This manuscript describes the synthesis and characterization of guanine and cytosine‐containing supramolecular copolymers, which are inspired from the guanine and cytosine nucleobase pair in deoxyribonucleic acid. Regioselective Michael‐addition allowed the efficient installation of the nucleobases on acrylate‐containing monomers, which enabled the preparation of a series of nucleobase‐functionalized acrylate andn‐butyl acrylate copolymers using conventional free radical copolymerization. Guanine‐containing copolymers exhibited superior thermal properties, thermomechanical performance, and more defined morphological structure than cytosine‐containing copolymer analogs due to the relatively strong guanine self‐association, thus expanding the potential applications for mechanically reinforced polymeric networks. Blending guanine‐ and cytosine‐containing copolymers formed a supramolecular structure through multiple hydrogen bonding between guanine and cytosine units. The supramolecular blend exhibited intermediate thermomechanical and morphological properties, which suggested that guanine and cytosine units were not fully associated in the random copolymer composition. This work provides valuable fundamental understanding of structure–property‐morphology relationships in acrylic copolymers with the presence of guanine‐cytosine self‐ and complementary interactions, suggesting new understanding in supramolecular design for enhanced mechanical and morphological properties.

     
    more » « less
  4. Abstract

    Vat photopolymerization (VP) and direct ink write (DIW) additive manufacturing (AM) provide complex geometries with precise spatial control employing a vast array of photo‐reactive polymeric systems. Although VP is recognized for superior resolution and surface finish, DIW provides versatility for higher viscosity systems. However, each AM platform presents specific rheological requirements that are essential for successful 3D printing. First, viscosity requirements constrain VP polymeric materials to viscosities below 10 Pa s. Thus, this requirement presents a challenging paradox that must be overcome to attain the physical performance of high molecular weight polymers while maintaining suitable viscosities for VP polymeric materials. Second, the necessary rheological complexity that is required for DIW pastes requires additional rheological measurements to ensure desirable thixotropic behavior. This manuscript describes the importance of rheological measurements when designing polymeric latexes for AM. Latexes effectively decouple the dependency of viscosity on molecular weight, thus enabling high molecular weight polymers with low viscosities. Photo‐crosslinking of water‐soluble monomers and telechelic oligomeric diacrylates in the presence of the latex enables the fabrication of a scaffold, which is restricted to the continuous aqueous phase and effectively surrounds the latex nanoparticles enabling the printing of otherwise inaccessible high molecular weight polymers. Rheological testing, including both steady and oscillatory shear experiments, provides insights into system properties and provides predictability for successful printing. This perspective article aims to provide an understanding of both chemical functionality (photo‐ and thermal‐reactivity) and rheological response and their importance for the successful design and evaluation of VP and DIW processable latex formulations.

     
    more » « less
  5. This work reveals the influence of pendant hydrogen bonding strength and distribution on self-assembly and the resulting thermomechanical properties of A-AB-A triblock copolymers. Reversible addition-fragmentation chain transfer polymerization afforded a library of A-AB-A acrylic triblock copolymers, wherein the A unit contained cytosine acrylate (CyA) or post-functionalized ureido cytosine acrylate (UCyA) and the B unit consisted of n-butyl acrylate (nBA). Differential scanning calorimetry revealed two glass transition temperatures, suggesting microphase-separation in the A-AB-A triblock copolymers. Thermomechanical and morphological analysis revealed the effects of hydrogen bonding distribution and strength on the self-assembly and microphase-separated morphology. Dynamic mechanical analysis showed multiple tan delta (δ) transitions that correlated to chain relaxation and hydrogen bonding dissociation, further confirming the microphase-separated structure. In addition, UCyA triblock copolymers possessed an extended modulus plateau versus temperature compared to the CyA analogs due to the stronger association of quadruple hydrogen bonding. CyA triblock copolymers exhibited a cylindrical microphase-separated morphology according to small-angle X-ray scattering. In contrast, UCyA triblock copolymers lacked long-range ordering due to hydrogen bonding induced phase mixing. The incorporation of UCyA into the soft central block resulted in improved tensile strength, extensibility, and toughness compared to the AB random copolymer and A-B-A triblock copolymer comparisons. This study provides insight into the structure-property relationships of A-AB-A supramolecular triblock copolymers that result from tunable association strengths. 
    more » « less
  6. null (Ed.)
  7. Abstract

    Glioblastoma (GBM), characterized by high infiltrative capacity, is the most common and deadly type of primary brain tumor in adults. GBM cells, including therapy‐resistant glioblastoma stem‐like cells (GSCs), invade the healthy brain parenchyma to form secondary tumors even after patients undergo surgical resection and chemoradiotherapy. New techniques are therefore urgently needed to eradicate these residual tumor cells. A thiol‐Michael addition injectable hydrogel for compatibility with GBM therapy is previously characterized and optimized. This study aims to develop the hydrogel further to capture GBM/GSCs through CXCL12‐mediated chemotaxis. The release kinetics of hydrogel payloads are investigated, migration and invasion assays in response to chemoattractants are performed, and the GBM‐hydrogel interactions in vitro are studied. With a novel dual‐layer hydrogel platform, it is demonstrated that CXCL12 released from the synthetic hydrogel can induce the migration of U251 GBM cells and GSCs from the extracellular matrix microenvironment and promote invasion into the synthetic hydrogel via amoeboid migration. The survival of GBM cells entrapped deep into the synthetic hydrogel is limited, while live cells near the surface reinforce the hydrogel through fibronectin deposition. This synthetic hydrogel, therefore, demonstrates a promising method to attract and capture migratory GBM cells and GSCs responsive to CXCL12 chemotaxis.

     
    more » « less
  8. null (Ed.)